USE OF RECIRCULATING AQUACULTURE SYSTEM IN SALMON AND SEA TROUT RESTOCKING IN LITHUANIA

Egidijus Leliūna

Fisheries Service under the Ministry of Agriculture of the Republic of Lithuania

& Nature Research Centre

Main salmon and sea trout rivers in Lithuania

Natural production of salmon smolts in the rivers of Lithuania

Salmon recovery program "Salmon Action Plan 1997 - 2010"

Legislative and institutional regulation

Protection of spawning grounds and migration routes, monitoring of spawning and habitat restoration

Research activities and monitoring

Information, training, and education

The organization and regulation framework for recreational fisheries in rivers

Construction of fish ladders

6

Salmonid species, reared in RAS equipped branches of the Fisheries Service

Salmo: Atlantic salmon (*S. salar*) Sea trout (*S. trutta*)

Salvelinus: Brook trout (*S. fontinalis*)

Oncorhynchus: Rainbow trout (*O. mykiss*)

Thymallus: Greyling (*T. thymallus*)

Coregonus:

Euroean whitefish (C. *lavaretus*) Vendace (C. a*lbula*) Peled (C. *peled*)

Artificial rearing of salmonids in Lithuania

Salmon growth rate at the Žeimena RAS

Marine Harvest 2010. Salmon Farming Industry Handbook.

Salmon releases in Lithuania

Sea trout releases in Lithuania

Genetic studies of salmon and sea trout populations Salmon, mtDNA ND1 RFLP

Populations of salmon, investigated with SNP's

Main genetic indices

Population	Nb individuals	Nb polymorphic loci	Mean nb alleles	Но	Не	Nb loci deviating from HWE*	After Bonferroni correction	F _{is}
PHA	28	2654	1.825	0.330	0.327	23	5	-0.00517
PHG	28	2620	1.814	0.339	0.331	68	2	-0.02221
LN	28	2461	1.765	0.339	0.323	83	6	-0.04648
SM	28	3030	1.942	0.325	0.325	85	2	-0.00038
PS	28	2645	1.822	0.337	0.327	88	6	-0.02486

Fst values for pairwise comparisons of salmon PL, LN and SM populations based on geographical location (below the diagonal) and average number of pairwise differences within populations (on the diagonal)

	PL	LN	SM
PL	876.431		
LN	0.218	795.614	
SM	0.217	0.275	983.046

Genetic studies of salmon and sea trout populations

Sea trout, mtDNA RFLP of ND1, ND3/4 and ND5/6

Genetic studies of salmon and sea trout populations Sea trout, mtDNA RFLP of ND1, ND3/4 and ND5/6

Genetic studies of salmon and sea trout populations Sea trout, mtDNA RFLP of ND1, ND3/4 and ND5/6

Populations of sea trout, investigated with SNP's

Population	No. of individuals	No. of polymorphic loci	Mean number of alleles	Ho	H _e	Ne (CI 95%)
DB	50	20	1.870	0.267	0.256	103.3
PS	50	22	1.957	0.261	0.269	159.2
PD	49	21	1.913	0.266	0.270	185.2
LN	50	22	1.957	0.199	0.219	26.5
ER	50	21	1.913	0.247	0.246	71.2
EL	50	18	1.783	0.354	0.345	56.8
EV	50	18	1.783	0.298	0.305	197.6
RJ	50	19	1.826	0.257	0.271*	51
RR	50	19	1.826	0.293	0.290	450.7

Genetic variability and effective population size in populations of sea trout from the Baltic Sea basin

	Bornholm	Slupia	Vistula	Neman	Riguldi	Loo	Valkla	Jukkola	Rompoti
Bornholm	4.8891 ^a	0.0852	0.0636	0.0889	0.0229	0.0845	0.0712	0.1264	0.1570
Slupia	*	5.4647 ^a	0.0098	0.0297	0.0782	0.1289	0.0776	0.1012	0.1742
Vistula	*	NS	5.2523 ^a	0.0082	0.0614	0.0986	0.0637	0.0912	0.1626
Neman	*	*	NS	4.4295 ^a	0.0648	0.1160	0.0498	0.0652	0.1409
Riguldi	NS	*	*	*	5.0705 ^a	0.0929	0.0562	0.0887	0.1403
Loo	*	*	*	*	*	6.0154 ^a	0.0516	0.1315	0.1163
Valkla	*	*	*	*	*	*	5.4398 ^a	0.0633	0.0894
Jukkola	*	*	*	*	*	*	*	4.9743 ^a	0.0731
Rompoti	*	*	*	*	*	*	*	*	5.2232 ^a

^a Average number of pairwise differences within population

* Significant for a $\alpha = 0.05$, NS = Non-Significant

Above diagonal: Fst values for pairwise comparisons Below diagonal: significance level for genetic differentiation among pairs of populations On diagonal: average number of pairwise difference within population.

A neighbor-joining tree constructed using the Nei's distances between the nine sea trout populations

Restocking of salmon and sea trout in Lithuania Problems and future plans

No fish tagging program – future plans!

Restocking of salmon and sea trout in Lithuania Problems and future plans

Some RAS related developmental disorders

Thank you!

Спасибо за внимание!